Nanotechnology-supported THz medical imaging

نویسندگان

  • Andreas Stylianou
  • Michael A Talias
  • Safieddin Safavi-Naeini
  • Creidhe O’Sullivan
چکیده

Over the last few decades, the achievements and progress in the field of medical imaging have dramatically enhanced the early detection and treatment of many pathological conditions. The development of new imaging modalities, especially non-ionising ones, which will improve prognosis, is of crucial importance. A number of novel imaging modalities have been developed but they are still in the initial stages of development and serious drawbacks obstruct them from offering their benefits to the medical field. In the 21 (st) century, it is believed that nanotechnology will highly influence our everyday life and dramatically change the world of medicine, including medical imaging. Here we discuss how nanotechnology, which is still in its infancy, can improve Terahertz (THz) imaging, an emerging imaging modality, and how it may find its way into real clinical applications. THz imaging is characterised by the use of non-ionising radiation and although it has the potential to be used in many biomedical fields, it remains in the field of basic research. An extensive review of the recent available literature shows how the current state of this emerging imaging modality can be transformed by nanotechnology. Innovative scientific concepts that use nanotechnology-based techniques to overcome some of the limitations of the use of THz imaging are discussed. We review a number of drawbacks, such as a low contrast mechanism, poor source performance and bulky THz systems, which characterise present THz medical imaging and suggest how they can be overcome through nanotechnology. Better resolution and higher detection sensitivity can also be achieved using nanotechnology techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanotechnology-supported THz medical imaging [version 1; referees: 2 approved]

Over the last few decades, the achievements and progress in the field of medical imaging have dramatically enhanced the early detection and treatment of many pathological conditions. The development of new imaging modalities, especially non-ionising ones, which will improve prognosis, is of crucial importance. A number of novel imaging modalities have been developed but they are still in the in...

متن کامل

Single n+-i-n+ InP nanowires for highly sensitive terahertz detection.

Developing single-nanowire terahertz (THz) electronics and employing them as sub-wavelength components for highly-integrated THz time-domain spectroscopy (THz-TDS) applications is a promising approach to achieve future low-cost, highly integrable and high-resolution THz tools, which are desirable in many areas spanning from security, industry, environmental monitoring and medical diagnostics to...

متن کامل

Terahertz Technology for Nano Applications

The terahertz (THz) region of the electromagnetic spectrum is generally defined as the frequency range of 0.1–10 THz (10 cycles per second) corresponding to quantum energy of 0.4 meV–0.4 eV (see Fig. 1). THz electromagnetic waves (also known as T-rays) have several properties that could promote their use as sensing and imaging tool. There is no ionization hazard for biological tissue and Raylei...

متن کامل

Thz Medical Imaging

The terahertz (THz) part of the electromagnetic spectrum falls between the lower frequency millimetre wave region and, at higher frequencies, the far-infrared region. The frequency range extends from 0.1 THz to 10 THz, where both these limits are rather loose. As the THz region separates the more established domains of microwaves and optics, a typical THz technique will incorporate as pects of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013